

Kea Webinar

Kea lease allocation, client classification and option assignment

Carsten Strotmann

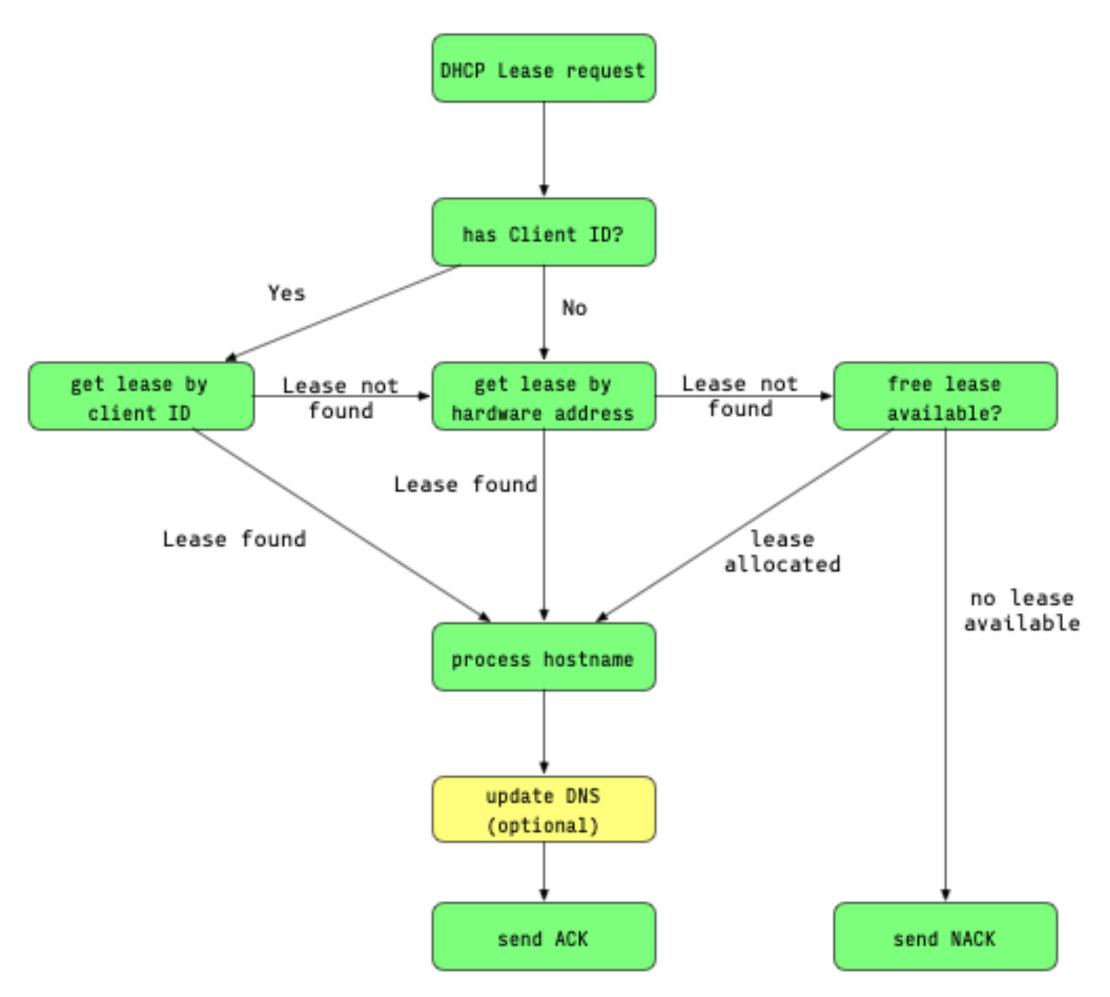
14th October 2020

https://www.isc.org

Welcome

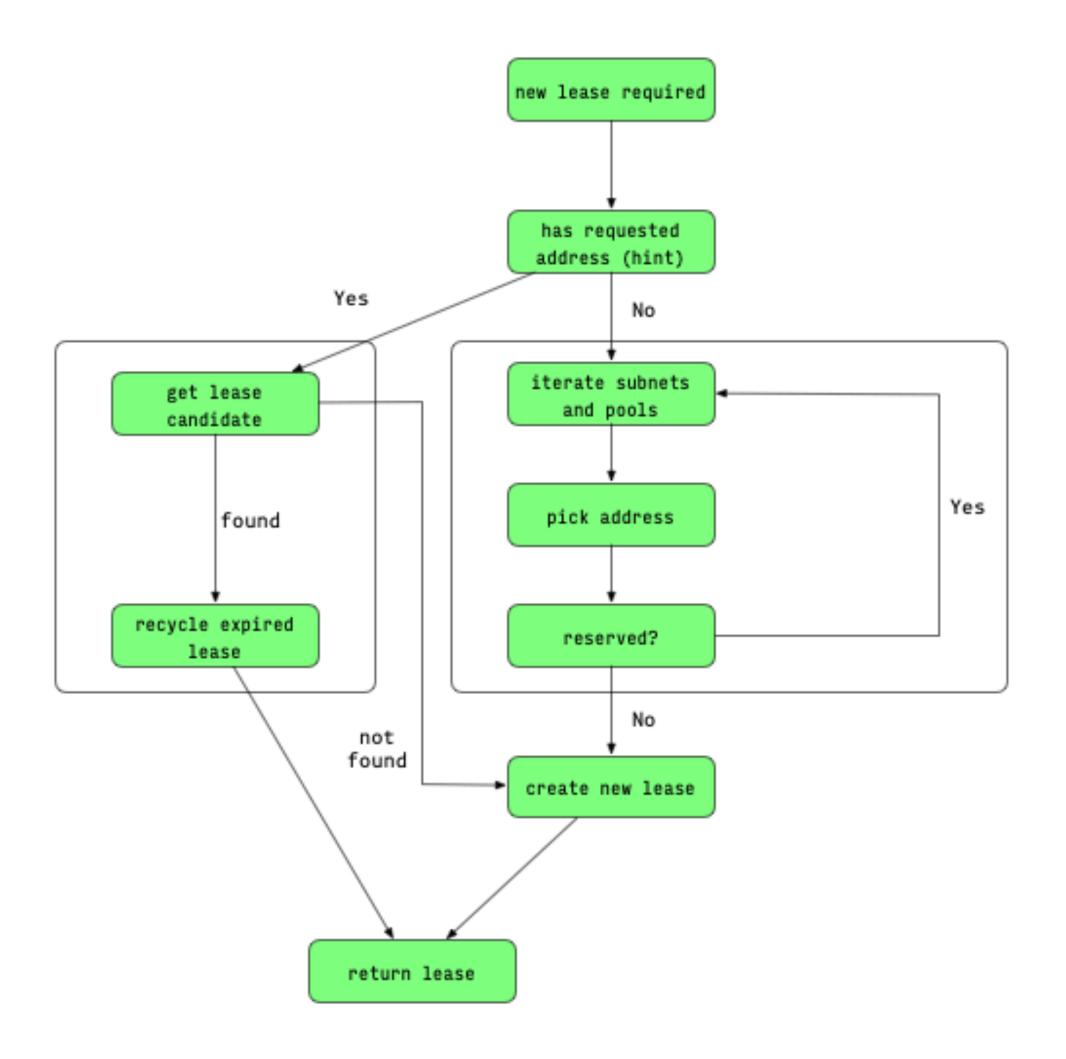
Welcome to part three of our webinar series
 "the KEA DHCP Server"

- Lease allocation
- Client classification
- DHCP options
- DHCP reservations
- Shared subnets
- Questions & Answers



Lease allocation

Kea lease allocation (simplified)



(without sharednetworks or reservations)

Kea lease allocation (detail)

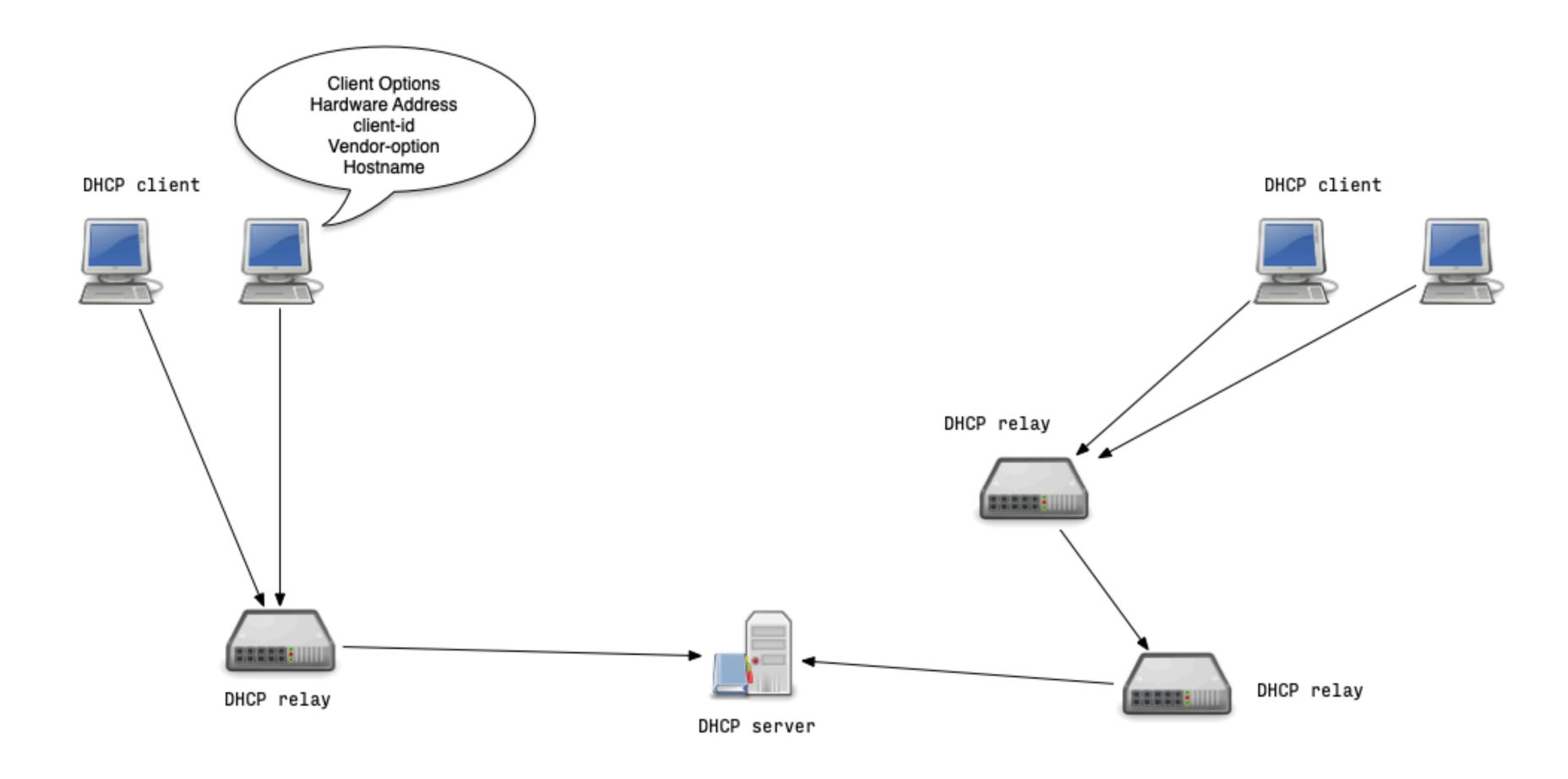
Kea lease allocation details

- When searching for a new lease
 - Kea 1.8 iterates over all subnets by subnet-id
 - Previous versions iterated over subnets in configuration file order

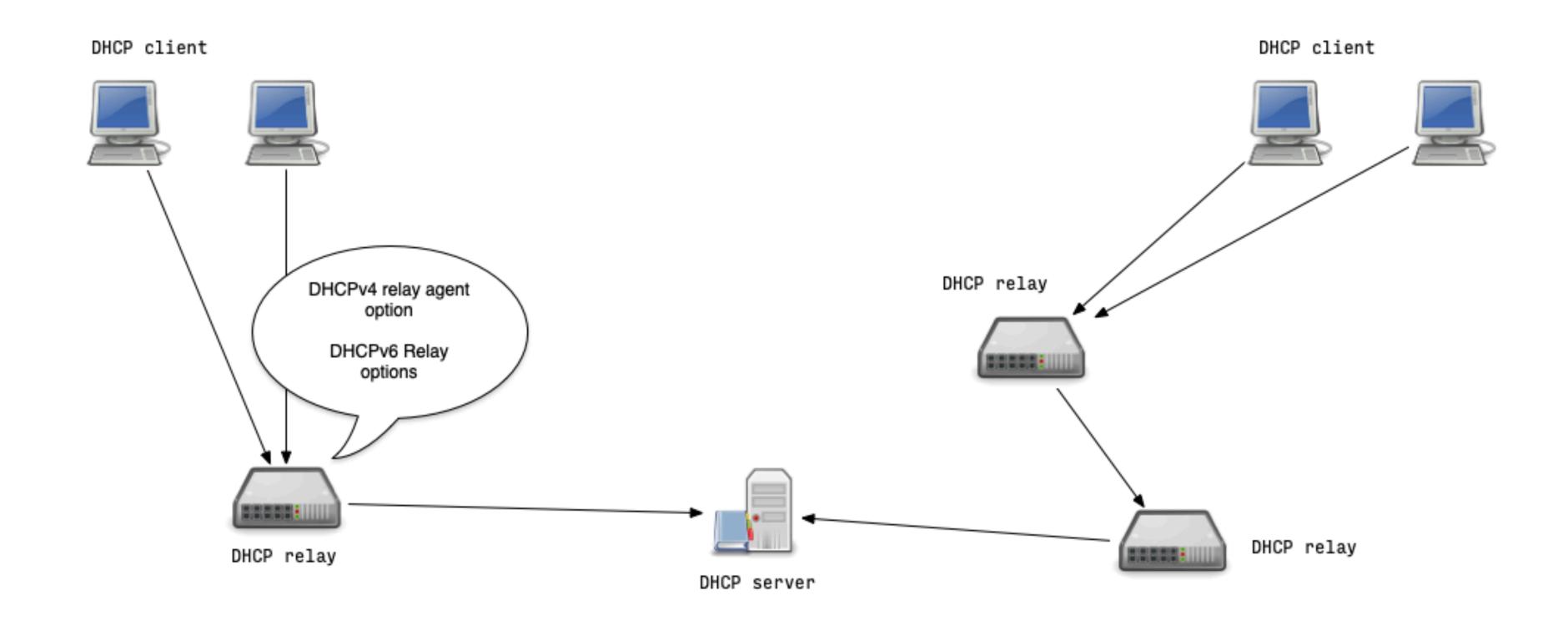
Client classification

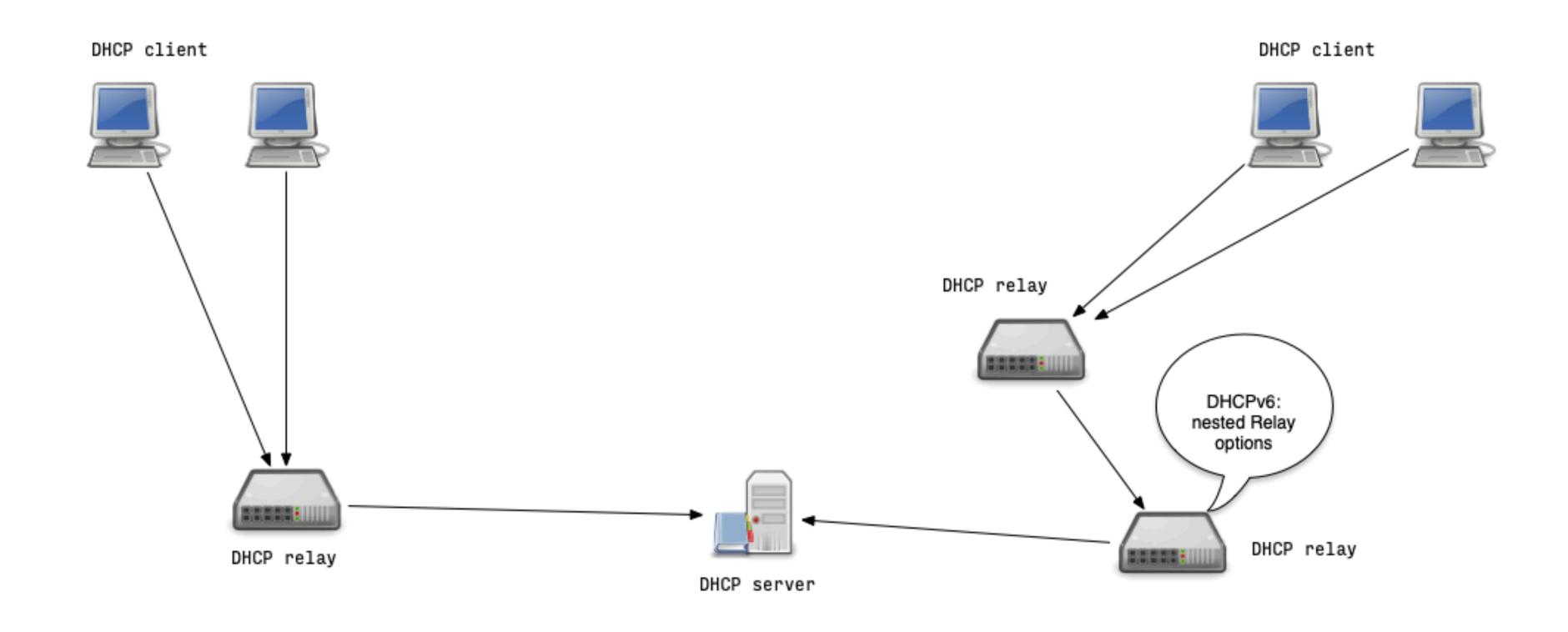
DHCP client classes

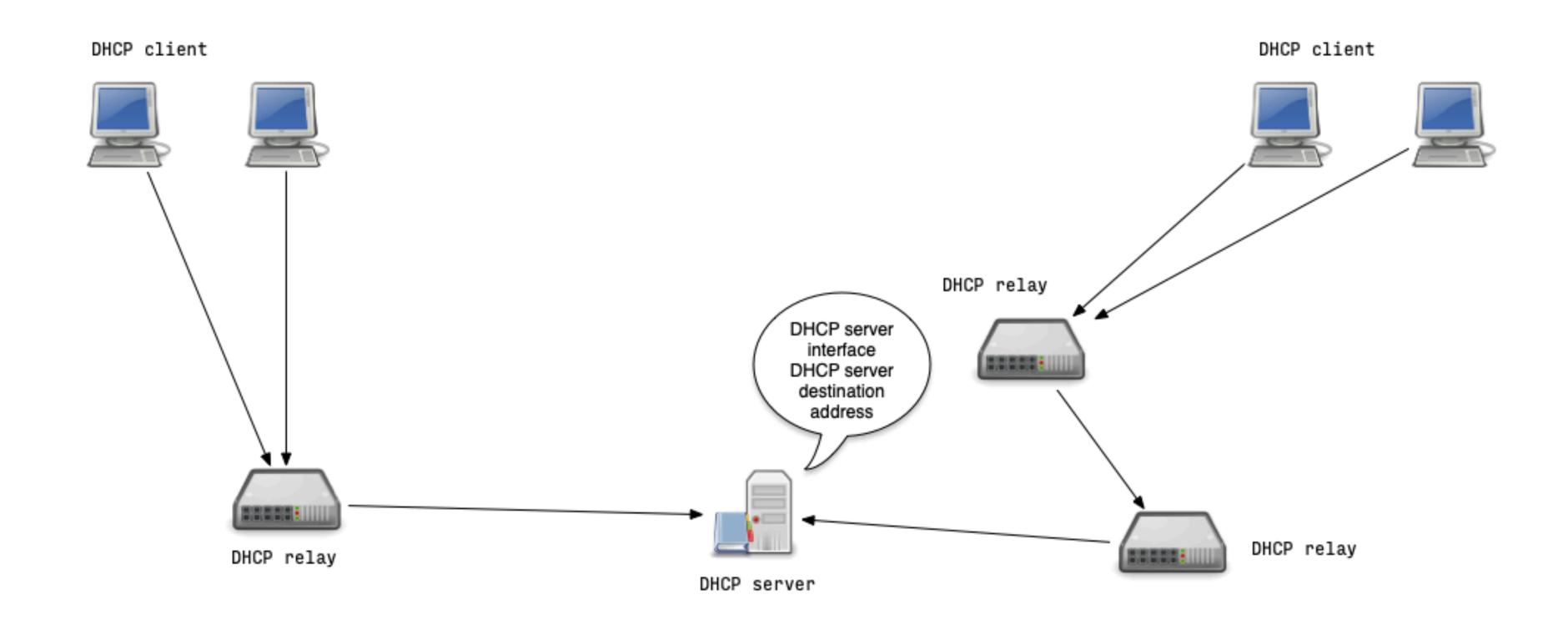
- Kea DHCP can assign one or more client classes to client requests
- Depending on the client classes, different DHCP information can be send to the client:
 - DHCP-Options
 - IP-Addresses
 - BOOTP-Parameter inside DHCP responses
- Kea can select from multiple subnets / pools with the help of client classes


DHCP client classes

- Client classes can be build from various DHCP identifier
 - information from the client host
 - information from the DHCP relay
 - information from the DHCP packet path towards the DHCP server
- Client classification examines the incoming DHCP packet's contents and selects one or more class(es) based on configuration criteria







Automatic vendor classing

- Kea DHCP automatically assigns a vendor client class if a vendor option (DHCPv4 option 60 or DHCPv6 option 16) is set in the DHCP request
- the content of that option is prepended
 with VENDOR_CLASS_ and the result is interpreted as a class
 - For example, modern cable modems send this option with value docsis3.0, so the packet belongs to class VENDOR_CLASS_docsis3.0

Automatic vendor classing example

- example subnet selection based on the vendor option
 - a client must be in any of the client classes listed to get a lease from this subnet
 - The vendor options used in this exercise are examples and not the real-world vendor option values:

Automatic vendor classing example

```
"shared-networks": [
                "name": "kea-net01",
                "relay": { "ip-address": "192.0.2.1" },
                "subnet4": [
                        "subnet": "192.0.2.0/24",
                        "client-class": "VENDOR_CLASS_windowsCE", # <-- Windows CE Clients will get
                                                                   # an IP from this subnet
                        "option-data": [{
                                "name": "routers", "data": "192.0.2.1" }],
                        "pools": [{
                                "pool": "192.0.2.60 - 192.0.2.220" }]
                    },
                        "subnet": "10.0.0.0/24",
                        "client-class": "VENDOR CLASS fedoraLinux", # <-- Fedora-Linux Clients will
                                                                     # get an IP from this subnet
                        "option-data": [
[...]
```


The KNOWN and UNKNOWN classes

- Kea automatically assigns classes based on host reservations
 - all clients with a host reservation will be in the KNOWN class
 - all client without reservation will be in the UNKNOWN class
- for example, these classes can be used to separate guests from staff clients

Dynamic client classing based on expressions

- DHCP requests can be assigned one or more client classes
 - Expressions can be used to extract information from the DHCP request message
 - Logical and conditional expressions can be used to assign classes to the DHCP request
- List of available expressions:

https://kea.readthedocs.io/en/kea-1.8.0/arm/classify.html#using-expressions-in-classification

List of Classification Values		
Name	Example expression	Example value
String literal	'example'	'example'
Hexadecimal string literal	0x5a7d	'Z}'
IP address literal	10.0.0.1	0x0a000001
Integer literal	123	'123'
Binary content of the option	option[123].hex	'(content of the option)'
Option existence	option[123].exists	'true'
Binary content of the sub-option	option[12].option[34].hex	'(content of the sub-option)'
Sub-Option existence	option[12].option[34].exists	'true'
Client class membership	member('foobar')	'true'
Known client	known	member('KNOWN')
Unknown client	unknown	not member('KNOWN')
DHCPv4 relay agent sub-option	relay4[123].hex	'(content of the RAI sub-option)'
DHCPv6 Relay Options	relay6[nest].option[code].hex	(value of the option)
DHCPv6 Relay Peer Address	relay6[nest].peeraddr	2001:DB8::1
DHCPv6 Relay Link Address	relay6[nest].linkaddr	2001:DB8::1
Interface name of packet	pkt.iface	eth0
Source address of packet	pkt.src	10.1.2.3
Destination address of packet	pkt.dst	10.1.2.3
Length of packet	pkt.len	513
Hardware address in DHCPv4 packet	pkt4.mac	0x010203040506
Hardware length in DHCDv/ nacket	nkt/1 hlan	4

Client classification example (1/3)

 configuration for dynamic client classing based on the vendor option (Option 60) content

Client classification example (2/3)

- the client class is used to select a subnet inside a shared network
- windows clients get IP addresses from the 1st subnet
- client with other operating systems get IP addresses from the 2nd subnet

Client classification example (3/3)

```
"shared-networks": [
        "name": "kea-lab01",
        "relay": { "ip-address": "192.0.2.1" },
        "subnet4": [
                "subnet": "192.0.2.0/24",
                "client-class": "windows", # <-- all Windows Clients will
                                           # get IP addresses from this subnet
                "option-data": [{
                        "name": "routers", "data": "192.0.2.1" }],
                "pools": [{
                        "pool": "192.0.2.60 - 192.0.2.250" }]
                "subnet": "10.0.0.0/24",
                "client-class": "other", # <-- non Windows Clients will
                                         # get IP addresses from this subnet
                "option-data": [
```


- Client classification via complex expressions can hurt the DHCP server performance
- Alternative: writing a custom hook for client classification

- to debug client classing based on expressions, enable debug logging inside the Kea DHCP server
- quick option: start KEA DHCP4 in debug mode from the command line. This will automatically enable the highest debugging level
 - on a busy server, this will create too much debug information (see next slide for an alternative)

```
[kea-server]# systemctl stop kea-dhcp4
[kea-server]# kea-dhcp4 -d -c /etc/kea/kea-dhcp4.conf
```


•Alternative: enable the special kea—dhcp4.eval or kea—dhcp6.eval debug logger in the Kea configuration file

 watch for the test evaluation results in the Kea Eval DHCP4 log file

[kea-server]# tail -f /var/log/kea-dhcp4-eval.log

DHCP options

- DHCP options can be configured in different scopes in the Kea configuration
 - global
 - class
 - subnet
 - pools
 - reservations

Global DHCP options (1/2)

```
"Dhcp4": {
    "option-data": [{
        "name": "domain-name-servers",
        "code": 6,
        "space": "dhcp4",
        "csv-format": true,
        "data": "192.0.2.1, 192.0.2.2"
    },
    ....
]}
```

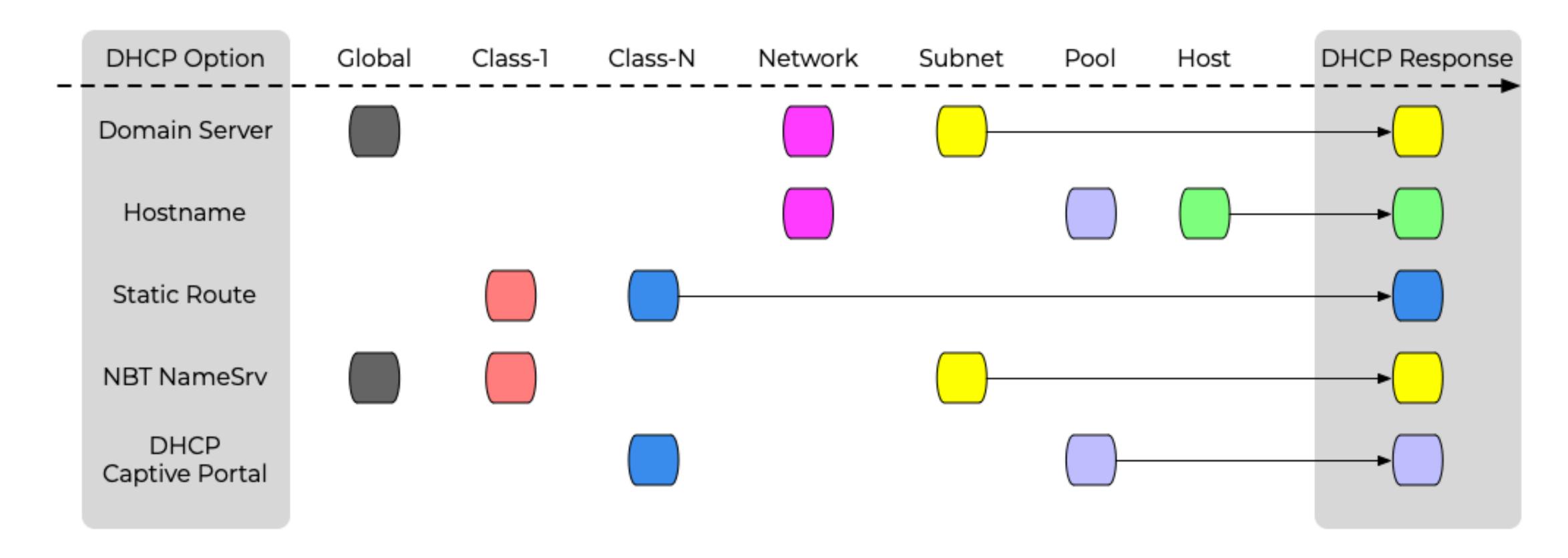

Global DHCP options (2/2)

• if the default values are used, the fields code, space and csv-format can be obmitted "Dhon4": {

Defining custom DHCPv4 options (1/2)

- sometimes it is required to define custom DHCP options that are not part pf the DHCP standards.
 - These can be vendor specific options, or new DHCP options that are not yet implemented in Kea DHCP

Defining custom DHCPv4 options




```
"Dhcp4": {
    "option-def": [{
            "name": "my-message",
            "code": 234,
            "type": "string",
            "array": false,
            "record-types": "",
            "space": "dhcp4",
            "encapsulate": "" }],
    "option-data": [{
            "name": "my-message",
            "space": "dhcp4",
            "csv-format": true,
            "data": "Hello World" }],
```


Option assignment order

Client-class options are assigned in the order in which the client classes are evaluated (specified in the configuration)

DHCP reservations

Why DHCP reservations

- Security policies
- stable addressing (server)
- IP bound licenses
- captive portal (KNOWN vs. UNKNOWN clients)

DHCP reservations

- Kea DHCP supports reservations of client leases based on
 - hardware interface address (MAC-Address)
 - DHCP Unique ID (DUID)
 - Relay-Circut-ID (DHCPv4)
 - Client-ID / Hostname (DHCPv4)
 - flex.id

DHCP reservation parameter

- Alongside IP-Address leases, reservations can also reserve a number of DHCP parameters for a client
 - hostname
 - DHCP options
 - reservation-client-classes
 - boot-file-name (BOOTP/DHCPv4)
 - next-server (BOOTP/DHCPv4)
 - server-hostname (BOOTP/DHCPv4)

Global vs. Subnet reservation (1/2)

- DHCP reservations can optionally be defined on a global scope
 - global reservations can be used to assign a fixed hostname or other options to a client
 - Kea does not prevent the definition of DHCP parameters on the global level that are only useful in an subnet scope (like IP address or IPv4 default route). Be careful!

Global vs. Subnet reservation (2/2)

- The common case is to have reservations in the subnet or shared-subnet scope
 - Kea 1.9 will allow for reservations to be defined on a global and subnet level

Example of global reservation

```
"Dhcp4:" {
    # This specifies global reservations. They will apply to all subnets that
    # have global reservations enabled.

"reservations": [
    { "hw-address": "aa:bb:cc:dd:ee:ff", "hostname": "hw-host-dynamic" },
    { "hw-address": "01:02:03:04:05:06", "hostname": "hw-host-fixed", "ip-address": "192.0.1.77" }, # risky!
    { "circuit-id": "'office042'", "hostname": "circuit-id-host" },
[...]
```


in-pool vs out-of-pool reservations

- Host reservations can be inside a dynamic DHCP pool or outside a dynamic DHCP pool
- Reservations that are inside a pool can lead to DHCP conflicts

https://kea.readthedocs.io/en/latest/arm/dhcp4-srv.html#conflicts-in-dhcpv4-reservations

and also might result in a performance loss (see DHCP tuning)

Dynamically manage DHCP reservations

- Small Kea deployments (small = a few hundred client machines) can have the DHCP reservations inside the Kea configuration file
- Larger deployments might want to change the DHCP reservations dynamically and programatically via the API
 - The Host Commands hook (part of the Premium hooks package) adds a number of new commands to Kea used to query and manipulate host reservations

Dynamically manage DHCP reservations

- the Host Commands hook requires a database (-
 - > next webinar) for storing the host reservations
- If reservations are specified in both file and database, file reservations take precedence over the ones in the database.

Command	Description
reservation-add	add a new reservation to the Kea DB
reservation-get-all	get all reservation information (can be huge)
reservation-get	get information on a single reservation (by address or identifier)
reservation-get-page	get all reservation information from a subnet by pages (used for GUI display)
reservation-get-by- hostname	get the reservation information for one host by its hostname
reservation-get-by-id	get the reservation information for one host by its identifier (global, since 1.9.0)
reservation-del	delete a reservation from the database

Example command file to add a reservation (1/2) \$ cat reservation-add.json

 this command snippet can be used to create a new reservation inside the Kea Host database

```
$ cat reservation-add.json
  "command": "reservation-add",
  "service": [ "dhcp6" ],
  "arguments": {
    "reservation": {
      "duid": "01:02:03:04:05:06:07:08:09:0A",
      "hostname": "foo.example.com",
      "ip-addresses": [ "2001:db8:1::1" ],
      "option-data": [{
          "data": "4491",
          "name": "vendor-opts"
          "data": "3000:1::234",
          "name": "tftp-servers",
          "space": "vendor-4491"
      "subnet-id": 1
```


 the curl command can be used to send the request towards the Kea API

Example command file retrieving all reservations

 this command snippet can be used to retrieve all reservations from the Kea Host database

```
$ cat reservation-get-all.json
{
    "service": [
        "dhcp6"
],
    "command": "reservation-get-all",
    "arguments": {
        "subnet-id": 1
    }
}
$ curl -s -X POST -H "Content-Type: application/json" \
    -d @reservation-get-all.json http://127.0.0.1:8000/ | jq
```


Client classing in reservations

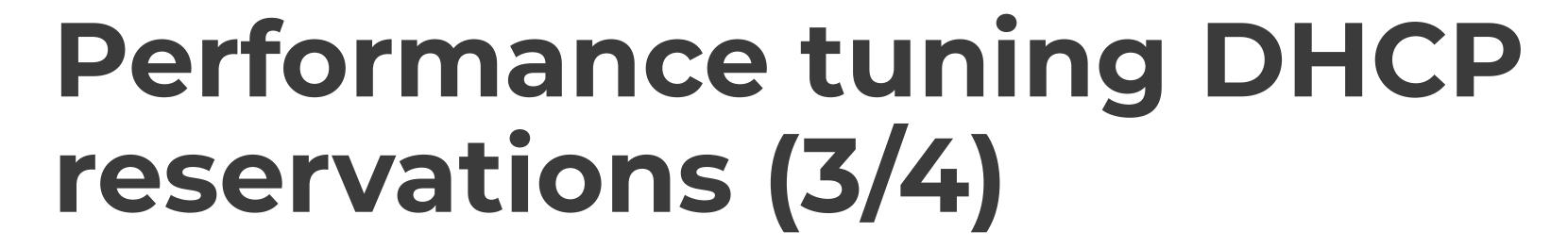
 clients can be associated to a client-class using a reservation (using the Hardware-Address, DUID, Client-ID, Relay-ID)

Performance tuning DHCP reservations (1/4)

- Kea DHCP must check for every lease request for conflicts with reservations.
 This can slow down the DHCP lease assignment process
- •in some cases, where reservations are not in use or used only in certain scopes, some of these checks can be disabled with the reservation—mode configuration parameter

 "Dhcp4": {
 "subnet4": [{
 "subnet4": "192.0.2.0/24"
- the parameter can be specified at global, subnet, and shared-network levels.

```
"Dhcp4": {
    "subnet4": [{
        "subnet": "192.0.2.0/24",
        "reservation-mode": "disabled",
        ...
    }]
}
```



Performance tuning DHCP reservations (2/4)

reservation-mode	description
all	reservations can be on global, subnet or inside pool scope, all checks enabled
out-of-pool	reservations in subnets are always outside the pool
global	only global reservations allowed, not subnet/pool reservations
disabled(*)	host reservation support is disabled, no checks for collisions

(*) the best performance is achieved when host reservations are disabled (if no reservations are used). In that case Kea can skip all the checks and lookups.

- Kea currently supports four types of identifiers:
 - hw-address
 - duid
 - client-id
 - circuit-id
 - flex-id
- For each incoming packet, Kea has to extract each identifier type and then query the database to see if there is a reservation by this particular identifier.

Performance tuning DHCP reservations (4/4)

- A parameter called host-reservation-identifiers takes a list of identifier types that Kea will check
 - For best performance the number of identifier types should be kept to a minimum, ideally one

Shared subnets

- a shared subnet is a physical subnet with multiple IP networks
 - one shared subnet definition can contain two or more subnet definitions
 - options can be defined on the shared-network, subnet and pool level
 - without client classification, Kea might choose an IP address from any pool of all subnets inside the shared network

When to use Shared Subnets

- Shared Subnets are adding complexity to a DHCP server configuration and should only be used if there is a good use case
 - shared subnet are sometimes created if a larger number of IP addresses are needed in a network, but because of IPv4 address shortage no continuous range of IPv4 addresses are available
 - another use case of shared subnets is a network where addresses from different IPv4 subnets (and possibly different network configuration) should be given to different network devices


```
[...]
        "shared-networks": [
                "name": "kea-lab01",
                "relay": { "ip-address": "192.0.2.1" },
                "subnet4": [{
                        "subnet": "192.0.2.0/24",
                         "option-data": [
                             { "name": "routers", "data": "192.0.2.1" }],
                        "pools": [{ "pool": "192.0.2.20 - 192.0.2.190" }]
                    }, {
                        "subnet": "10.0.0.0/24",
                         "option-data": [
                             { "name": "routers", "data": "10.0.0.1" }],
                         "pools": [{ "pool": "10.0.0.10 - 10.0.0.200" }]
[...]
```


Next Webinars

- 28th October Kea DHCP High Availability and Database Backends
- 18th November Kea DHCP Monitoring, Logging, and Stork
- 2nd December Kea DHCP Migrating to Kea from ISC DHCP

- Understanding Client Classification
- https://kb.isc.org/docs/en/understanding-client-classification
- •Do I need to use shared-networks or not with Kea DHCP? https://kb.isc.org/docs/en/do-i-need-to-use-shared-networksor-not-with-kea-dhcp
- Host Reservation in DHCPv4
- https://kea.readthedocs.io/en/latest/arm/dhcp4-srv.html#host-reservation-in-dhcpv4
- Standard DHCP Options Defined in ISC DHCP and Kea https://kb.isc.org/docs/en/aa-01323

Questions and Answers

